HEMATOLOGIC ASPECTS OF AUTOIMMUNE HEMOLYTIC ANEMIAS

Lawrence D. Petz, M.D. Emeritus Professor University of California Los Angeles, California, U.S.A.;

Medical Director StemCyte International Cord Blood Center Covina, California, U.S.A.

Classification of Autoimmune Hemolytic Anemias

Warm antibody AIHA Cold agglutinin syndrome Paroxysmal cold hemoglobinuria

Unusual Immune Hemolytic Anemias

- Combined cold and warm AIHA
- AIHA with a negative direct antiglobulin (Coombs) test
- AIHA following blood transfusion
- AIHA in pregnancy
- Drug-induced AIHA
- The passenger lymphocyte syndrome
- Sickle cell hemolytic transfusion reaction syndrome ("Hyperhemolysis Syndrome")

WARM ANTIBODY AIHA

<u>Clinical manifestations:</u> variable, usually symptoms of anemia, occasionally acute hemolytic syndrome. <u>Prognosis:</u> Fair, with significant mortality. <u>Therapy:</u> Steroids, splenectomy, immunosuppressive drugs.

COLD AGGLUTININ SYNDROME

Clinical manifestations: Moderate chronic hemolytic anemia in a middle-aged or elderly person. Signs and symptoms may be exacerbated by cold. **Prognosis:** Good, usually a chronic and guite stable anemia. Therapy: Avoidance of cold exposure, immunosuppressive drugs.

PAROXYSMAL COLD HEMOGLOBINURIA

<u>Clinical manifestations:</u> Acute hemolysis often with hemoglobinuria, usually in a child. **Prognosis: Excellent after initial stormy** course. **Therapy: Steroids empirically and** transfusions if necessary.

DRUG-INDUCED AIHA

<u>Clinical manifestations:</u> Variable; most commonly subacute in onset; occasionally severe hemolysis.

Prognosis: Excellent.

<u>Therapy:</u> Discontinue drug; occasionally a short course of steroids empirically.

Incidence of Various Kinds of Immune Hemolytic Anemias

Warm antibody AIHA 70.3%
Cold agglutinin syndrome 15.6%
Paroxysmal cold hemoglobinuria 1.7%
Drug-induced hemolytic anemia 12.4%

SECONDARY AIHA

- 1. Association of AIHA with an underlying disorder with a frequency greater than can be explained by chance alone. (CLL, SLE)
- 2. Reversal of AIHA with correction of the associated disease. (Ovarian tumor, ulcerative colitis)
- 3. Evidence of immunologic aberration as part of the underlying disorder, especially if the associated disease is thought to have an autoimmune pathogenesis (e.g., SLE).

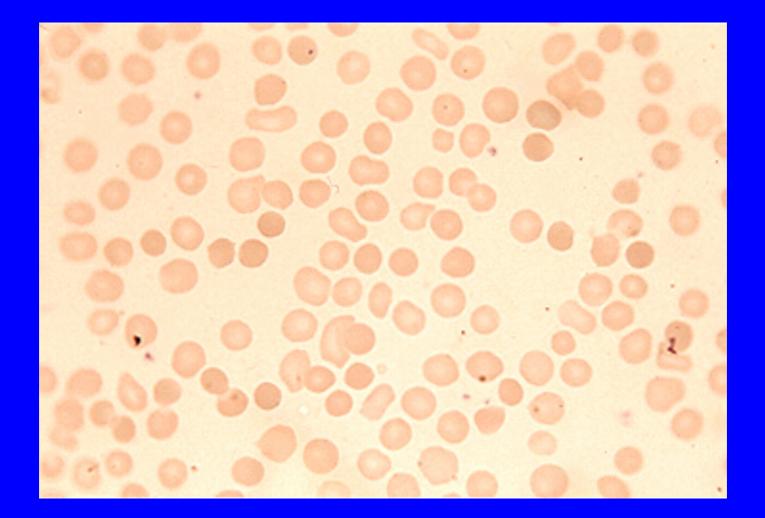
SECONDARY AIHA

- 1. Lymphoid neoplasms, especially CLL, lymphomas.
- 2. Collagen diseases (SLE, RA, polyarteritis nodosa)
- 3. Ulcerative colitis.
- 4. Ovarian tumors.
- 5. Infections (*Mycoplasma pneumoniae*, infectious mononucleosis, HIV, CMV, bacterial infections)
- 6. Primary immunodeficiency diseases (IgA deficiency, hyper-IgM syndrome, Wiskott-Aldrich syndrome).
- 7. AIHA after hematopoietic stem cell transplantation.

ULCERATIVE COLITIS

- 1. The association of the two disorders is quite uncommon (0.6-1.7% incidence in ulcerative colitis).
- 2. The AIHA has almost invariably gone into remission after colectomy, even when the hemolysis is refractory to other therapeutic approaches.
- 3. Some authors suggest that patients with ulcerative colitis and AIHA unresponsive to steroids should undergo proctocolectomy.

OVARIAN TUMORS


- 1. AIHA in association with ovarian tumors is very unusual but important.
- 2. Tumors include teratomas, dermoid cysts, malignant neoplasms.
- 3. A striking resistance of AIHA to any therapeutic approach other than surgical removal of the tumor.
- 4. Production of antibodies by ovarian tumors has been demonstrated.

WARM ANTIBODY AIHA

Characteristic Laboratory Findings

- Anemia.
- Abnormal RBC morphology. Spherocytosis, anisocytosis, poikilocytosis, polychromatophilia, autoagglutination.
- Reticulocytosis (reticulocytopenia in some patients).
- Thrombocytopenia (Evans' Syndrome).
- Leukocytosis (leukopenia in some patients).
- Urine may contain bile pigments (and/or hemoglobin in patients with severe hemolysis).
- Erythroid hyperplasia in the bone marrow.

Microspherocytes

Reticulocytopenia

- Diagnosis is more difficult.
- In one series of 109 patients with AIHA, reticulocyte counts ranged from 0.4% to 92%.
- 20% of patients had an initial counts <4%.
- Reticulocyte counts improved with therapy.
- Low initial counts thus probably represented a lag in responsiveness to hemolysis.

Reticulocytopenia

- Since there is no compensation for the short RBC survival, reticulocytopenia can be a medical emergency.
- Reticulocytopenia may persist for weeks or even months before resolving.
- The bone marrow usually demonstrates erythroid hyperplasia indicating intramedullary hemolysis.

Reticulocytopenia

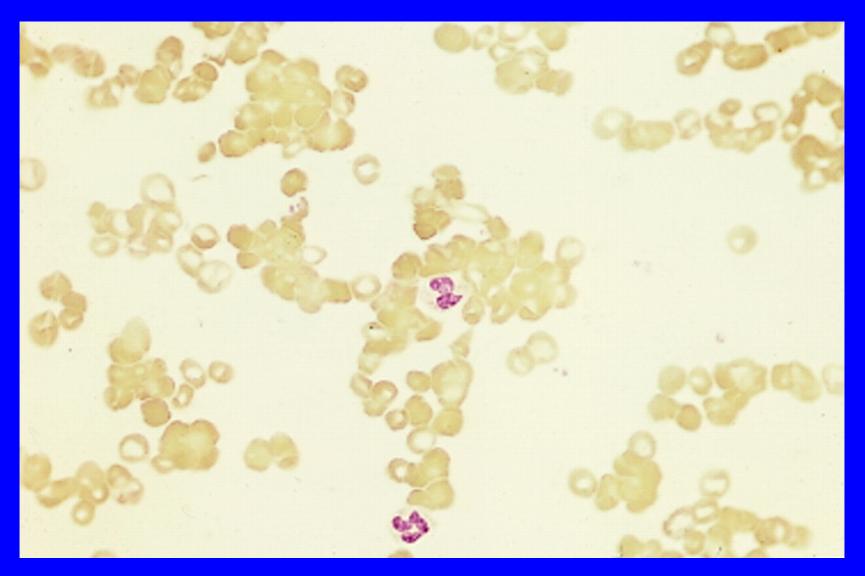
Possible Mechanisms

- 1. RBC autoantibodies may react with nucleated RBCs and reticulocytes.
- 2. Parvovirus B19 binds to RBC precursors and is directly cytotoxic. Transient aplastic crises result. Usually resolves in 7-14 days.

IMMUNOPANCYTOPENIA

- Evans and Duane reported 5 patients with AIHA and thrombocytopenia and this has become known as "Evans' Syndrome."
- Two of the 5 patients also had leukopenia.
- The authors suggested the presence of a broadly reactive antibody or a separate antibody more specific for platelets and WBCs.

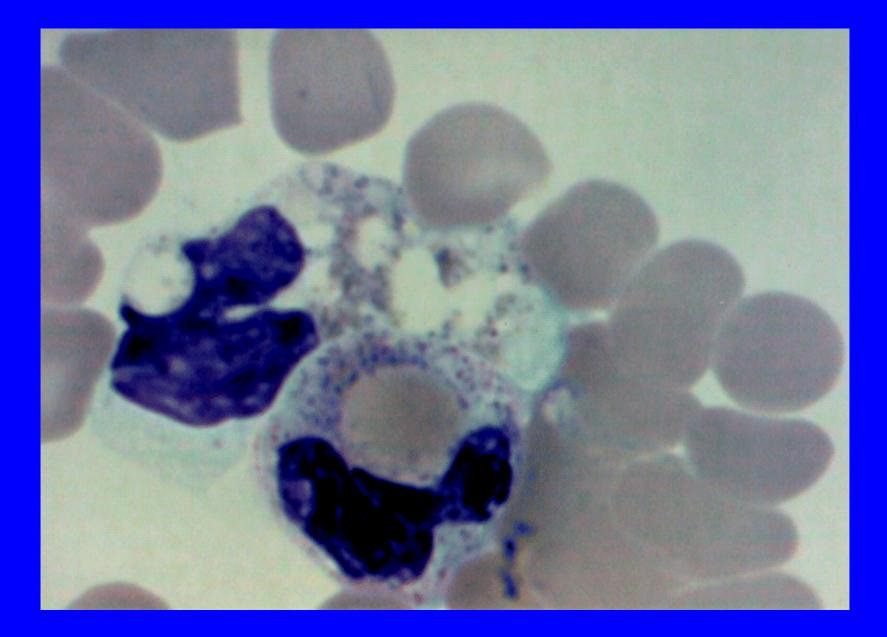
IMMUNOPANCYTOPENIA


- Subsequent reports have indicated the presence of antibodies specific for granulocytes and platelets.
- Antibodies were cell specific and did not consist of a single cross-reacting antibody.
- Therefore, AIHA may be a complex autoimmune syndrome that may involve leukocytes and platelets as well as RBCs, with synthesis of autoantibodies specific for different blood cells.

COLD AGGLUTININ SYNDROME

Characteristic Laboratory Findings

- Mild to moderate anemia in an elderly patient. Prominent autoagglutination, especially at cold temperatures.
- Abnormal RBC morphology Modest degrees of spherocytosis, anisocytosis, poikilocytosis, polychromatophilia.
- Reticulocytosis
- Jaundice
- Hemoglobinuria
- Erythroid hyperplasia in the marrow


RBC CLUMPING IN COLD AGGLUTININ DISEASE

PAROXYSMAL COLD HEMOGLOBINURIA

Characteristic Laboratory Findings

- Acute hemolysis, especially in a child.
 - The anemia may be rapidly progressive.
- Abnormal RBC morphology Spherocytosis, anisocytosis, poikilocytosis, autoagglutination, polychromatophilia. <u>Erythrophagocytosis</u> by neutrophils is commonly present.
- Hemoglobinuria
- Reticulocytosis and erythroid hyperplasia in marrow may be present.
- WBC and platelet counts normal or elevated.

Frequency of Signs and Symptoms in 42 patients

Sign/Symptom	No. of Patients
Hemoglobinuria	41
Jaundice	33
Pallor	28
Fever	23
Abdominal Pain	17
Malaise	14
Cough	13
Palpable liver/spleen	12

Serum	Blutkörperchen 3 Tropfen	Mischung durch ¹ / ₂ Stde. bei 5° ge- halten, dann 2 ¹ / ₂ Stdn. bei 37°	Mischung durch 3 Stdn. bei 37° gehalten
Fall K. (Hämoglobinurik.) 4 Tropfen	Fall K. B. W. Ch. G. A. R.	rubinrot rot rot rot	0 0 0
Fall R. (Hämoglobinurik.) 10 Tropfen	Fall R. B. W. Ch. G. A. R.	rubinrot rubinrot rubinrot rubinrot	Spur Rötung Spur " Spur " Spur "
Fall N. (Hämoglobinurik.) 7 Tropfen	Fall N. B. W. Ch. G. A. R.	rubinrot rubinrot rot rubinrot	0 0 0
B. W. 6 Tropfen	B. W. Fall R. Fall N. Ch. G.	6 6 8 schwachrot	0 Ø Spur Rötung deutlich rot
Ch. G. 7 Tropfen	Ch. G. Fall K. Fall N.	8 8 8	0 0 0
A. R. 6 Tropfen	Fall K. Fall N. Fall R. B. W. Ch. G.	0 0 0 0	8 8 9 0

Serum	Blood Cells 3 Drops	Held for ½ hr at 5°, then 2½ hr at 37°	Held 3 hours at 37°
Patient K	Patient K	Ruby red	0
(hemoglo-	B.W.	Red	0
binuria)	Ch.G.	Red	0
4 Drops	A.R.	Red	0
Patient R	Patient R	Ruby red	Trace of red
(hemoglo-	B.W.	Ruby red	Trace of red
binuria)	Ch.G.	Ruby red	Trace of red
10 Drops	A.R.	Ruby red	Trace of red
Patient N	Patient N	Ruby red	0
(hemoglo-	B.W.	Ruby red	0
binuria)	Ch.G.	Red	o
7 Drops	A.R.	Ruby red	0
B.W.	B.W.	0	0
6 Drops	Patient R	0	0
	Patient N	0	Trace of red
	Ch.G.	Red tinged	Clear distinct red
Ch.G.	Ch.G.	0	0
7 Drops	Patient K	0	0
	Patient N	0	0
A.R.	Patient K	0	0
6 Drops	Patient N	0	0
967	Patient R	0	0
	B.W.	0	0
	Ch.G.	0	0

COMBINED COLD AND WARM AIHA ("MIXED AIHA")

- Serologic findings characteristic of warm antibody AIHA while also having a cold agglutinin of high thermal amplitude.
- A cold agglutinin of high thermal amplitude (reactive at 30°C) must be documented.
- Patients characteristically have severe anemia, respond well to corticosteroids initially, but then often develop chronic hemolysis.

COMBINED COLD AND WARM AIHA ("MIXED AIHA")

Considerations in Diagnosis

- 35% of patients with warm antibody AIHA have cold agglutinins reactive to 20°C.
- Only 5% of these cold agglutinins are clinically significant and react at 37°C.
- Some patients with warm antibody AIHA have cold autoantibodies with normal cold agglutinin titers but of high thermal amplitude.

Autoimmune Hemolytic Anemia with a Negative Direct Antiglobulin (Coombs) Test

- Extensive evaluation fails to identify a nonimmunlogic etiology and clinical findings are suggestive of autoimmune hemolytic anemia.
- The patients destroy transfused normal RBCs thus indicating an extrinsic mechanism for RBC destruction.
- Often autoantibodies can be detected using techniques more sensitive than standard procedures.

Acquired Hemolytic Anemia with a Negative Direct Antiglobulin (Coombs) Test

> Exclude nonimmune causes of hemolytic anemia

- Oxidant drugs
- Mechanical hemolytic anemia
- Paroxysmal nocturnal hemoglobinuria
- Microangiopathic hemolytic anemia
- Infectious agents (e.g., malaria, Clostridium perfringens)

Autoimmune Hemolytic Anemia with a Negative Direct Antiglobulin (Coombs) Test

Mechanisms

- The concentration of IgG and/or C3 on RBCs is too low to be detected by routine tests.
- Presence of IgA or IgM autoantibodies which are not detected by the usual DATs.
- Presence of low-affinity IgG autoantibodies that elute from the RBCs during washing in preparation for the DAT.

The concentration of IgG and/or C3 on RBCs is too low to be detected by routine tests.

- Use sensitive methods to detect small amounts of autoantibody on RBCs.
- Detect autoantibodies in the patient's sera using agglutination potentiators (especially enzyme-treated RBCs and the direct polybrene test).
- Detect autoantibodies in concentrated eluates prepared from 50-200 ml of RBCs and concentrated to ~1ml.

Autoimmune Hemolytic Anemia with a Negative Direct Antiglobulin (Coombs) Test

- Repeat the DAT using cold saline (0-4°C) to wash patient's RBCs.
- Perform direct polybrene test.
- Indirect antiglobulin test using serum or eluate against enzyme-treated RBCs.
- Perform DAT with anti-IgA and anti-IgM and potent anti-C3, if available.
- Prepare concentrated eluate from large volume of patient's RBCs (50-200 ml concentrated to ~1 ml).
- Use column agglutination test or flow cytometry.

Autoimmune Hemolytic Anemia with a Negative Direct Antiglobulin (Coombs) Test

Therapy and Course

- Treat similarly to patients with warm antibody AIHA who have typical serologic findings.
- The response to therapy (e.g., steroids, splenectomy) is similar to that of patients with typical AIHA.
- Response likely to be associated with a reduction of cell-bound IgG as documented by sensitive tests.

Development of RBC Autoantibodies and AIHA following Transfusion.

Early Reports

- Dameshek and Levine 1943.
- Fudenberg et al 1958
- Allen 1960
- Chown et al 1971
- Cook 1971 (Immunized Rh-negative men with Rh-positive blood. Eleven of 34 subjects developed a RBC autoantibody in addition to the expected anti-D)

Retrospective Reviews of Multiply Transfused Patients

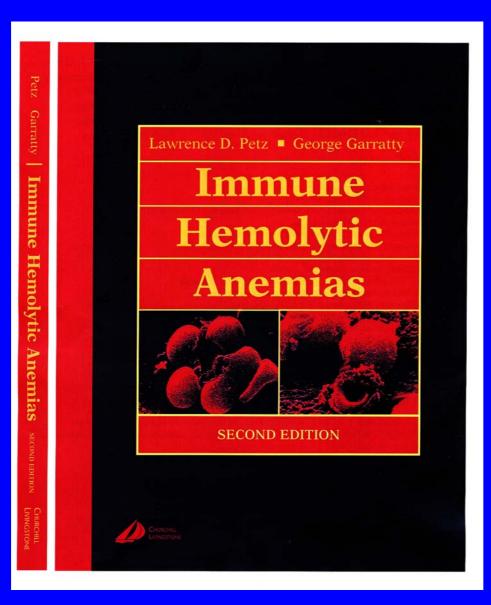
- Of 184 patients with sickle cell disesase who received multiple RBC transfusions, 7.6% developed warm IgG RBC autoantibodies, often in association with alloantibodies.
- Mean transfusion exposure at time of autoantibody formation was 24 RBC units.
- Clinically significant AHIA occurred in 4 patients.

Castellino et al. BJH 1999;104:189-194

Retrospective Reviews of Multiply Transfused Patients

- Twenty five percent of 64 transfused patients with thalassemia developed RBC autoantibodies and a positive DAT.
- Three patients developed severe AIHA and required prolonged treatment.

Singer et al. Blood 2000;96:3369-3373.


The Source of Autoantibodies

- The production of alloantibodies may not be strictly specific, especially after prolonged immune stimulation. Thus the alloantibodies may expand their specificity to become autoantibodies.
- Alternatively, latent immune cells capable of producing autoantibody are stimulated to do so after prolonged immunization.

The Source of Autoantibodies

- Donor lymphocytes persist in patients for at least 1½ years following blood transfusion.
- Such microchimerism may result in antibody production by persistent donor cells.

Churchill-Livingstone, New York 2004

